Compd	Formula ^a	Mp, °C	Yield, %	Solvent	Ir, cm ⁻¹
1b	C ₁₄ H ₂₂ N ₂ O	82-83	52	Petr ether	
1b · HCi	$C_{14}H_{23}ClN_2O$	121-122		EtOH-Et ₂ O	
1c	$C_{21}H_{26}N_2O_2$	165-166	78	EtOH-petr ether	1630 (C=O)
1d	$C_{30}H_{33}NO_3$	84-85	47	Petr ether	1730 (O-C=O)
					1620 (N-C=O)
le·HCl	C ₂₂ H ₃₀ ClNO	163–164	94	EtOH-Et ₂ O	3200 (OH)
2a HCl	C ₁₅ H ₂₁ CINO	158-159	64	EtOH-Et ₂ O	1120 (O-C-N)
2b ^b	$C_{14}H_{19}NO_2S$	107-108	15	EtOH	1135(C=S)
3a · picrate	$C_{22}H_{24}N_4O_9$	180-181	40	C ₆ H ₆	1740 (C=O)
3b ^c	$C_{16}H_{19}NO_3$	126-127	73	Me ₂ CO-cyclohexane	1745 (O-C=O)
				•	1665 (N-C=O)
3c	$C_{15}H_{20}N_2OS$	182-183	36	CHCl ₃ -petr ether	1190(C=S)
3d · HCl	C ₁₆ H ₂₃ ClN ₂ OS	148-149	49	EtOH-Et ₂ O	1170 (C=S)

^{*a*}All compds were analyzed for C, H, and N and were within $\pm 0.4\%$ of the theoretical values. ^{*b*}Shown by the and nmr to be a mixt of geometrical isomers (5:1) with the cis isomer predominant.^{*s*} ^{*c*}Caled nmr spectrum in C₆H₆ indicates an envelope conformation.²

Table II.

Table I

Compd		Phenylquinone- induced writhing ^b		Neuropharmacological Tests ^b						
								Tonic	Death	
	LD _{so} , ^a mg/kg	% inhibition	ED₅₀, mg/kg	Mydriasis, %	Rotating rod, %	Grip strength, %	Hot plate, %	(pentylene- tetrazole), %	(pentylene- tetrazole), %	
1a	30-1 00		23.5	65	20	20	40	100	100	
4	30-100		5	-10	0	20	0	0	0	
1d	100-300	26.5		0	20	0	0	0	0	
1e	100-300	13.3		0	0	0	0	6 0	20	
2a	30-100	44		16	0	0	0	80	0	
5	30-1 00		10.5	27	0	0	0	0	20	
2c	>300	35.7		30	20	0	0	40	80	
3Ъ	>300	0		-26	0	20	0	10	40	

^aIp. ^bSc. ^cDose levels, 1a, 1d, 1e, 2e, and 3b, 100 mg/kg; 2a, 30 mg/kg; 4 and 5, 10 mg/kg.

This showed considerable anticonvulsant properties against pentylenetetrazole (ED_{50} 3-5 mg/kg sc) but was inactive against electroshock and strychnine-induced convulsions. The *N*-phenethyl analog (4) and the cyclic derivatives showed less activity under the test conditions.

Experimental Section

3-Cyclohexyl-5-phenyloxazolidine (2a). The aminoethanol (1a) (2.19 g) and formalin (1 ml, 40%) in EtOH (20 ml) were refluxed for 12 hr to yield the oxazolidine, bp 126-130 (0.3 mm), isolated as its stable hydrochloride.

3-Cyclohexyl-2-oxo-5-phenyl-1,2,3-oxathiazolidine (2b). $SOCl_2$ (2.3 ml), in CH_2Cl_2 (50 ml) was added slowly (15 min) to the aminoethanol (1a) (6.57 g) and Me_3N (11 ml) in CH_2Cl_2 (150 ml). The mixt was stirred (room temp) for 18 hr to yield 2b.

4-Cyclohexyl-6-phenylmorpholin-2-one (3a). Ethyl bromoacetate (3.34 g) in 1,2-dimethoxyethane (5 ml) was added slowly to the aminoethanol 1a (4.38 g) and NaHCO₃ (2 g) in 1,2-dimethoxyethane (20 ml) and the mixt was refluxed for 66 hr. The cooled mixt was dild with Et_2O , washed with H_2O , and distd to yield the morpholinone, bp 150-160° (0.7 mm), characterized as its picrate.

4-Cyclohexyl-6-phenylmorpholine-2,3-dione (3b). The aminoethanol 1a (13.57 g), $(COOEt)_2$ (4.38 g), and PhMe (150 ml) were refluxed for 18 hr during which time PhMe was slowly distd from the mixt. Evapn of residual solvent yielded 3b.

1-Cyclohexyl-1-(2-hydroxyphenethyl)hydrazine (1b). The aminoethanol 1a (21.9 g) in 1 NHCi (100 ml) at 50° was treated with NaNO₂ (10 g) in H₂O (30 ml) and stirred 2 hr. Et₂O extn yielded the N-nitroso compd as a yellow oil (20.2 g, 81%) which was reduced with LAH (8 g) in Et₂O (100 ml) to give the hydrazine.

4-Cyclohexyl-6-phenyl-3,4,5,6-tetrahydro-2*H*-1,3,4-oxadiazine-2thione (3c). A cold soln of KOH (1.12 g) in H₂O (4 ml) and EtOH (20 ml) was added to the hydrazine 1b (2.34 g) and CS₂ (1.52 g) and the mixt was refluxed for 4 hr. The cooled soln was dild with H₂O (50 ml) and acidified with N HCl to ppt 3c. Treatment with Me₂SO₄ yielded the N-Me deriv 3d.

1-Cyclohexyl-1-(2-hydroxy-2-phenylethyl)phenethylamine (1e).

The aminoethanol 1a (8.7 g), phenylacetyl chloride (13.1 g), and NaHCO₃ (10 g) in C_6H_6 (50 ml) refluxed for 4 hr, yielded the O,N-diphenylacetyl derivative 1d. Reduction of this amidoester (26.45 g) with LAH (4.6 g) in Et₂O (150 ml) yielded 1e.

Acknowledgment. We wish to thank Organon Laboratories for the award of a Postgraduate Studentship to D. L. Wheeler, and Dr. W. R. Buckett and N. Duff (Organon) for the pharmacological testing data.

References

- (1) W. J. Irwin and D. L. Wheeler, J. Chem. Soc C, 3166 (1971).
- (2) D. L. Wheeler, Ph.D Thesis, University of Aston in Birmingham, Birmingham, England, 1971.
- (3) E. Tubaro, Boll. Chem. Farm., 104, 602 (1965).
- (4) M. E. Dyen and D. Swern, Chem. Rev., 67, 197 (1967).
- (5) G. A. Youngdale, G. W. Duncan, D. E. Emmert, and D.
- Ledniser, J. Med. Chem., 9, 155 (1966).
- (6) H. S. Mosher, M. B. Frankel, and M. Gregory, J. Amer. Chem. Soc., 75, 5326 (1953).
- (7) S. Raines and C. A. Kovacs, J. Med. Chem., 11, 854 (1968).
- (8) J. A. Deyrup and C. L. Moyer, J. Org. Chem., 34, 175 (1969).

Central Nervous System, Antidiuretic, and Some Other Activities of Pyrazoles

H. G. Garg*

Department of Chemistry, University of Roorkee, Roorkee, India. Received March 5, 1971

A number of pyrazoline-4,5-diones and their functional derivatives¹⁻⁵ were tested for CNS⁶ and antidiuretic⁷ activ-

^{*}Address correspondence to: Harvard University Medical School, Laboratory for Carbohydrate Research, Massachusetts General Hospital, Boston, Massachusetts 02114.

Table I. CNS Activity

			Dose	A	ctivity, ⁸	min	
No.	x	Mp, °C	mg/kg Onset	Peak	Duration		
, X	≫-nн-		le	x	NHN =	Me N N	
		C=0 1 NH ₂			2	Ph	
1a b c d e 2a b c d	3-Cl 3-Cl 2-Cl 4-OMe 2,5-Cl ₂ H 2,5-Cl ₂ 2-Cl 4-OMe	203 ^a 210 ^a 201 ^a 258-259 ^e 156 ^f 224 ^f 182 ^f 135 ^f	100 ^b 300 ^d 300 ^d 300 ^d 300 ^d 300 ^d 300 ^d 300 ^d 300 ^d	65	190	135 ^c	

^aReference 1. ^bAll drugs were administered ip in rats (Pratt). ^cNo stimulation; depression was present. ^dOral administration in rats (Pratt). ^eReference 2. ^fReference 3. ^gReference 6.

Table II. Diuretic Activity^{a, b}

^aSee footnote a, Table I. ^bEight rats per group hydrated with 25 ml/kg of 0.9% NaCl po; length of test, 5 hr. ^cExperience has fixed the control % excretion value at 60 for rats. ^dReference 7.

Table III. A	Activity against <i>Eim</i>	eria tenella	
No.	X	Mp, °C	Activity ^{a,d}
	×	$-N = N \qquad Me \qquad Me \qquad N \sim N \qquad Me \qquad N \sim N \qquad DNP$	
1 2 3	$2,5-Cl_2$ $2-NO_2$ $4-Cl$	213–214° 216–218° 254–255°	b b b

^a0.05% dose level. ^bInactive. ^cReference 5. ^dReference 8.

Table IV. Antiviral Activity^{a, f}

			Respiratory syncytial long		Rhino virus 1059		Rhino virus 33342		
No.	X	Mp,°C	T ^{c, e}	$A^{d,e}$	T ^{<i>c</i>,<i>e</i>}	A ^{d,e}	T ^{<i>c</i>,<i>e</i>}	$A^{d,e}$	
	X N=N Me Me N~N DNP								
1	2-NO ₂ 3-NO	b b	0	0	1	0	1	0	

^{*a*}*In vitro.* ^{*b*}See footnote *d* of Table II. ^{*c*}Cell toxicity. ^{*d*}Plaque inhibition. ^{*e*}O = No plaque inhibition; 1 = <10 mm radius zone; 2 = >10 mm radius zone. ^{*f*}Reference 9.

ities in rats (Tables I and II, respectively), anthelmintic activity⁸ in chickens (Table III), and antiviral activity⁹ (Table IV).

Acknowledgment. The author is thankful to Dr. Maxwell Gordon (SK&F Laboratories, Philadelphia, Pa.) for making testing data available.

References

- H. G. Garg and S. N. Mehra, J. Indian Chem. Soc., 38, 325 (1961).
- (2) H. G. Garg and P. P. Singh, J. Chem. Soc. C, 1141 (1969).
- (3) H. G. Garg, J. Org. Chem., 27, 1045 (1962).
- (4) H. G. Garg and P. P. Singh, J. Med. Chem., 11, 1104 (1968).
- (5) H. G. Garg and P. P. Singh, *ibid.*, 11, 1103 (1968).
- (6) H. W. Werner and A. L. Tatun, J. Pharmacol. Exp. Ther., 66, 260 (1939).
- (7) F. Marcus, L. P. Romanoff, and G. Pincus, *Endocrinology*, 50, 286 (1952).
- (8) R. H. Mizzoni, R. A. Lucas, R. Smith, J. Boxer, J. E. Brown, F. Goble, E. Konopka, J. Gelzer, J. Szanto, D. C. Maplesden, and G. DeStevens, J. Med. Chem., 13, 878 (1970).
- (9) J. Ehrlich, B. J. Sloan, F. A. Miller, H. E. Machamer, Ann. N. Y. Acad. Sci., 130, 5 (1965).

3,3¹-Ethylenediglutarimide as a Potential Tumor Inhibitor

David B. Haydock and Thomas P. C. Mulholland*

Imperial Chemical Industries Ltd., Pharmaceuticals Division, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 TG, England. Received October 25, 1971

The antitumor activity shown¹ by $4,4^{1}$ -ethylenedipiperazine- $2,2^{1},6,6^{1}$ -tetrone (1) prompted us to synthesize the corresponding carbon isostere 8.

Dr. S. B. Carter of these Laboratories found that 8 was inactive against the tumor sarcoma 180.

Experimental Section[†]

2,5-Bis(hydroxymethyl)-1,6-hexanediol (3). A soln of 67.5 g of tetraethyl 1,1,4,4-butanetetracarboxylate (2)² in 250 ml of Et₂O was added dropwise under N₂ to a stirred soln of 30 g of LAH in 1.5 l. of Et₂O at 0°. The mixt was stirred at room temp for 30 min, refluxed for 2.25 hr, cooled to 0°, and treated, cautiously and in turn, with 30 ml of H₂O, 90 ml of 15% aq NaOH, and finally with 30 ml of H₂O. Solid material was filtered off. Evapn of the filtrate gave a trace of residue. The cake was digested 5 times with 1.5-l. portions of boiling Me₂CO, and the extracts, containing much diacetone alcohol, were evapd *in vacuo*. The residual oil was triturated with Me₂CO and the solid (8.8 g) obtd was combined with 29.3 g of similar material from 3 identical expts, then boiled with 21. of Me₂CO.

A colorless by-product, probably polymeric, did not dissolve and crystd from MeOH to give 3.36 g of prisms; mp 222-223°. Anal. $(C_{s}H_{10}O_{s})_{n}$ C, H.

[†]Melting points are corrected and were determined with a Kofler hot-stage apparatus. Nmr spectra were measured in $CDCl_3(TMS)$ with a Varian A60 spectrometer. Where analyses are indicated only by symbols of the elements, analytical results obtained for those elements were within $\pm 0.4\%$ of the theoretical values.